anthe Education and Scientific		Unit Description Form Course Description Form Faculty of Engineering / Department of			m	
		Unit Infor				
Unit Title	Eng	Course Info ineering Mecha		Unit delivery		
Unit Type		fundamental				نظريه 🛛
Unit Code		WBM-22-03		حاضر 🛛		حاضر 🛛
ECTS Credits			المختبر ⊠ تعليمي □			
/ ساعة) SWL (SEM					عملي ً 🗆 Seminar 🗆	
	Unit level	3		Delivery Semester		1
Department of	Department of Administration		College	College of Engineer		ege of Engineering
Unit Commander	Hussein Amir Muhammad Aljawad		E-mail Address	hussein.aljawad@uowa.edu.		vad@uowa.edu.iq
Title of Ur	Title of Unit Commanderteacher		Unit Con	Unit Commander Qualifications doctor		doctor
Unit Teacher		E-mail Address				
Peer Reviewer Name		name	E-mail Address	E-mail Ac		E-mail Address
Date of accreditation of the Scientific Committee		1 16/0/ 10 //	Version number		1.0	

Relationship with other units Relationship with other subjects				
Prerequisites Unit No Semester				
Common Requirements Unit	No	Semester		

Unit objectives, learning outcomes and how-to contents				
	objectives, learning outcomes and instructional contents			
	Objectives of the Engineering Mechanics Unit:			
	Introduce students to the basic concepts of geometric mechanics and understand			
	Newton's laws of motion.			
	Enable students to analyze mechanical systems using the principles of equilibrium			
	and forces.			
Objectives of the Unit	Enhance the ability to solve problems related to moments, stresses and flexibility.			
Course Objectives	Train students to apply engineering concepts in the design and analysis of machines			
	and structures.			
	Develop critical thinking and analytical skills in the study and analysis of mechanical			
	systems.			
	Qualify students to understand the practical applications of engineering mechanics			
	in engineering and science.			
	Engineering Mechanics Unit Learning Outcomes:			
	Understanding basic concepts: The student will be able to grasp the basic concepts			
	and laws of engineering mechanics, including Newton's laws and mechanical analysis.			
	Analysis of forces and equilibrium: The student becomes able to analyze the forces			
	acting on different systems and apply the conditions of equilibrium. Calculation of moments and stresses: The student can calculate moments and stresses in different			
Unit Learning	materials and stresses. The student can calculate moments and stresses in different			
Outcomes	Application of engineering principles: The student applies engineering concepts in the			
	design and analysis of machines and structures.			
Learning outcomes of	Mechanical problem solving: The student acquires the ability to solve problems using			
the course	methods			
	Analytical and mathematical modeling.			
	Technical communication: The student can prepare technical reports and present the			
	results of engineering analysis effectively.			
	• Critical thinking: The student develops critical and creative thinking skills in dealing			
	with the challenges of engineering mechanics.			
	Define the basic concepts of geomechanics and Newton's laws.			
	Analysis of forces and equilibrium in different engineering systems.			
Indicative Contents	Calculate moments and centers of gravity in composite objects.			
	The study of stress and strain in materials and structures.			
Indicative Contents	Analysis of mechanical structures such as bridges and frame			
	Practical applications of engineering mechanics in the design and analysis of			
	machines.			

Learning and Teaching Strategies					
Learning and Teaching Strategies					
Strategies	The learning and teaching strategy of the Engineering Mechanics Unit includes theoretical lectures to explain basic concepts, and solving practical exercises to enhance applied understanding. Interactive discussions and group projects are used to develop analytical and problem-solving skills. In addition, technology and simulation software are employed to illustrate engineering concepts and their applications.				

Student Workload (SWL) The student's academic load is calculated for 15 weeks					
SWL منظم (h / sem) Regular academic load of the student during the semester	64	SWL regulator(h/s) Regular student load per week	4		
SWL غیر منظم (h / sem) Irregular academic load of the student during the semester	61	Unregulated SWL (h/s) Irregular student academic load per week	4		
SWL (h / sem) SWL (h / sem) The student's total academic load during the semester			125		

Unit Evaluation Course Evaluation						
As Time/Number Weight (tags) Week due Related lea						
	Contests	2	10% (10)	5, 10	LO #1 , 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO #3 , 4, 6 and 7	
Assessment	Projects /Laboratory.	1	10% (10)	continuous	every	
	report	1	10% (10)	13	LO #5 , 8 and 10	
Final	Midterm Exam	2 hr	10% (10)	7	LO #1-7	
Assessment	Final Exam	2 hours	50% (50)	16	every	
	Overall Rating 100% (100 degree)					

Delivery Plan (Weekly Curriculum)					
	Theoretical Weekly Curriculum				
week	Covered Material				
Week 1	Basic concepts				
Week 2	Shear Force Diagrams (S.F.) and bending torque (B.M.) Using the section method.				
Week 3	Shear Force Diagrams (S.F.) and bending torque (B.M.) Using the section method.				
Week 4	Drawing Shear Force (S.F.) Diagramsand bending torque (B.M.) Using the graphical method.				
Week 5	Drawing Shear Force (S.F.) Diagramsand bending torque (B.M.) Using the graphical method.				
Week 6	Stresses in the beams				
Week 7	Composite beams				
Week 8	Transposed section method (alternative method – equivalent area)				
Week 9	Shear stresses in beams				

Learning and Teaching Resources Learning and Teaching Resources				
text Available in the library?				
Required texts	Strength of Materials Third and Fourth Edition . • Ferdinand and L.Singer Andrew Pytel	Yes		
Recommended texts		Yes		
Websites				

				Grading chart		
	Grading chart					
group	degree	Appreciation	Tags (%)	definition		
	A - Excellent	privilege	90 - 100	Outstanding Performance		
An-Najah	B - Very Good	Very good	80 - 89	Above average with some errors		
Group	C - Good	Good	70 - 79	Proper work with noticeable errors		
(50 - 100)	D - Satisfactory	medium	60 - 69	Fair but with significant shortcomings		
	E - sufficient	Acceptable	50 - 59	The work meets the minimum standards		
Group failure (0 – 49)	FX - Failed	Deposit (in (processing	(45-49)	More work required but credit granted		
	F - Failed	Failure	(0-44)	Large amount of work required		

Note: Signs that are more than 0.5 decimal places greater than or below the full mark will be rounded higher or lower (for example, a score of 54.5 will be rounded to 55, while a mark of 54.4 will be rounded to 54. The university has a policy of not tolerating "imminent traffic failure", so the only modification to the marks granted by the original mark(s) will be the automatic rounding described above.