

## Unit Description Form

**Course Description Form** 

/ Faculty of Engineering Department of Biomedicine



| Unit Information<br>Course Information |                                    |                    |                          |                          |                               |                   |  |
|----------------------------------------|------------------------------------|--------------------|--------------------------|--------------------------|-------------------------------|-------------------|--|
| Unit Title                             | Materials Science                  |                    |                          | Unit delivery            |                               |                   |  |
| Unit Type                              |                                    | fundamental        |                          |                          |                               |                   |  |
| Unit Code                              |                                    | BME-111            |                          |                          |                               | نظریه ⊠<br>حاضر ⊠ |  |
| ECTS Credits                           |                                    | 8                  |                          |                          | المختبر ⊠<br>تعليمي □         |                   |  |
| / ساعة) SWL<br>(SEM                    |                                    | 125                |                          |                          | <sup>ىملي</sup> □<br>Semina □ |                   |  |
| Unit level                             |                                    | 2                  | Deliv                    |                          | ivery Semester                | 1                 |  |
| Department of Administration           | Biomedical<br>Engineering          |                    | College                  |                          | Faculty of Engineerin         |                   |  |
| Unit<br>Commander                      | Hassan Allawi Cactus               |                    | E-mail<br>Address        | hassar                   | hassan.as@uowa.edu.ig         |                   |  |
| Title of Unit Co                       | mmander                            | Assistant Lecturer | Unit Comr<br>Qualificati | mander Maste             |                               | Master            |  |
| Unit Teacher                           | nit Teacher                        |                    | E-mail<br>Address        |                          |                               |                   |  |
| Peer Reviewer                          | Name                               | name               | E-mail<br>Address        | ail<br>ss E-mail Address |                               |                   |  |
| Date of accr<br>Scient                 | editation of the<br>ific Committee | 26/9/2024          | Version                  | number 1.                |                               |                   |  |

| Relationship with other units<br>Relationship with other subjects |    |          |  |  |  |
|-------------------------------------------------------------------|----|----------|--|--|--|
| Prerequisites Unit                                                | No | Semester |  |  |  |
| Common<br>Requirements Unit                                       | No | Semester |  |  |  |

| <b>Unit obj</b><br>Course ob                   | Unit objectives, learning outcomes and how-to contents<br>Course objectives, learning outcomes and instructional contents                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                | The objectives of the Materials Science module focus on enabling<br>students to understand the properties of different materials and their<br>applications in everyday and industrial life. Students aim to learn about<br>the classification of materials into categories such as metals, polymers,<br>ceramics, and composites, and to understand the difference between<br>the properties of each type of material such as electrical and thermal<br>conductivity, durability, and corrosion resistance. |  |  |  |  |  |
| Objectives of the<br>Unit<br>Course Objectives | The module also aims to teach students how to analyze the behavior of<br>materials under different conditions such as pressure, heat, and stress,<br>in addition to understanding manufacturing processes such as casting,<br>forming, welding, and heat treatment. Students gain the skills to select<br>the right materials for engineering and industrial applications based on<br>their physical and chemical properties.                                                                               |  |  |  |  |  |
|                                                | The module also includes the study of the practical applications of these materials in fields as diverse as electronics, construction, automotive, and energy, helping students understand the role of materials science in technological development and innovation.                                                                                                                                                                                                                                       |  |  |  |  |  |

| Unit Learning<br>Outcomes<br>Learning outcomes of<br>the course | The learning outcomes of the Materials Science module include enabling<br>students to understand the basic classification of materials such as<br>metals, polymers, ceramics, and composites, with the ability to<br>distinguish between properties of each type such as electrical and<br>thermal conductivity, durability, and corrosion resistance. Students<br>become able to analyze the behavior of materials under different<br>conditions of stress, heat, and pressure, and apply this understanding to<br>materials used in various industries.<br>Students learn how to select the right materials for engineering and<br>industrial applications based on their physical and chemical properties,<br>and acquire the skills needed to understand manufacturing processes<br>such as casting, forming, welding, and heat treatment. In addition, they<br>are able to assess the impact of these processes on the properties of<br>materials.<br>Students also gain the ability to connect theoretical concepts with<br>practical applications in fields as diverse as electronics, construction,<br>automotive, and energy, enhancing their understanding of the role of<br>materials science in technological innovation and the development of<br>industries. |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                 | The guidance contents of the Materials Science module address a range<br>of core topics that aim to provide a comprehensive understanding of the<br>properties of materials and their diverse uses. The module begins with an<br>introduction to materials science, explaining its definition and importance<br>in the development of technology and industry, with a presentation of the<br>basic types of materials such as metals, polymers, ceramics, and<br>composites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Indicative Contents                                             | The unit then examines the physical and chemical properties of<br>materials, such as electrical and thermal conductivity, durability,<br>corrosion resistance, and mechanical properties such as strength and<br>elasticity. Emphasis is placed on how these properties affect the choice<br>of materials in different applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Indicative Contents                                             | The behavior of materials under the influence of various conditions such<br>as stress, heat, and pressure is also studied, with an understanding of<br>how the properties of materials change when exposed to these factors.<br>Different manufacturing processes such as casting, forming, welding,<br>and heat treatment are reviewed, and how these processes affect the<br>properties of materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 | The contents also include practical applications of materials science in various industries such as electronics, construction, automotive, and energy. Through which theoretical concepts are linked to practical applications to enable students to understand the role of materials in technological innovation and the development of various industries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Learning and Teaching Strategies<br>Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Strategies                                                           | The learning and teaching strategy in the Materials Science module is<br>based on a combination of theoretical lectures and practical<br>demonstrations to illustrate the characteristics of the materials and their<br>applications. Students are encouraged to actively participate through<br>hands-on activities and laboratory experiments that allow them to<br>examine the behavior of materials under different conditions. Case<br>studies and group discussions are also used to develop critical thinking<br>skills. In addition, students are assigned applied projects to analyze and<br>select materials suitable for real industrial applications. |  |  |  |  |

| <b>Student Workload (SWL)</b><br>The student's academic load is calculated for 15 weeks        |                                                               |                                                                           |   |  |  |  |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|---|--|--|--|
| <b>SWL منظم (h / sem)</b><br>Regular academic load of the student<br>during the semester       | <b>SWL regulator (h / s)</b><br>Regular student load per week | 4                                                                         |   |  |  |  |
| <b>SWL غیر منظم (h / sem)</b><br>Irregular academic load of the student<br>during the semester | 61                                                            | <b>Unregulated SWL (</b> h/s)<br>Irregular student academic load per week | 4 |  |  |  |
| <b>SWL (h / sem)</b> إجمالي<br>The student's total academic load during<br>the semester        | Aemic load during<br>the semester 125                         |                                                                           |   |  |  |  |

| Unit Evaluation<br>Course Evaluation |                                                                  |      |          |            |                       |  |
|--------------------------------------|------------------------------------------------------------------|------|----------|------------|-----------------------|--|
| As                                   | As Time/Nu mber Weight (tags) Week due Related learning outcomes |      |          |            |                       |  |
| Formative<br>Assessment              | Contests                                                         | 2    | 10% (10) | 5, 10      | LO #1 , 2 , 10 and 11 |  |
|                                      | Assignments                                                      | 2    | 10% (10) | 2, 12      | LO #3 , 4 , 6 and 7   |  |
|                                      | Projects<br>/Laboratory.                                         | 1    | 10% (10) | continuous | every                 |  |
|                                      | report                                                           | 1    | 10% (10) | 13         | LO #5 , 8 and 10      |  |
|                                      | Midterm Exam                                                     | 2 hr | 10% (10) | 7          | LO #1-7               |  |

| Final<br>Assessment | Final Exam | 2 hours           | 50% (50) | 16 | every |
|---------------------|------------|-------------------|----------|----|-------|
| Overall Rating      |            | 100% (100 degree) |          |    |       |

|                      | Delivery Plan (Weekly Curriculum)<br>Theoretical Weekly Curriculum                                                                                                                                                      |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| week                 | Covered Material                                                                                                                                                                                                        |
| Week 1               | Introduction to Materials Science and Engineering                                                                                                                                                                       |
| Week 2               | Material classifications                                                                                                                                                                                                |
| Week 3               | Materials presented and their classification                                                                                                                                                                            |
| Week 4               | Solids                                                                                                                                                                                                                  |
| Week 5               | Crystalline solids                                                                                                                                                                                                      |
| Week<br>6+7+8        | Phase curve iron alloy and carbon phase shift                                                                                                                                                                           |
| Week9+<br>10         | Properties of biomaterials, applications of metal alloys 4 Physical<br>properties, the effect of physical properties of the surface of<br>biomaterial on biological responses, mechanical properties of<br>biomaterials |
| Week<br>11           | Chemical properties of bioceramics, effect of chemical properties of<br>the biomaterial surface on biological responses, solubility and<br>corrosion, filtration of components, corrosion                               |
| Week<br>12+13+1<br>4 | Polymer as a biomaterial, general techniques, materials used in maxillofacial prostheses, alex, polyurethane polymers, acrylic resins, resin teeth for prosthodontic applications                                       |
| Week 15              | Synthesis and testing of polymer as a biomaterial and polymer applications                                                                                                                                              |

| Learning and Teaching Resources<br>Learning and Teaching Resources |         |                           |  |  |  |
|--------------------------------------------------------------------|---------|---------------------------|--|--|--|
|                                                                    | text    | Available in the library? |  |  |  |
| Required texts                                                     | Sources | Yes                       |  |  |  |
| Recommended texts                                                  |         | Yes                       |  |  |  |
| Websites                                                           |         |                           |  |  |  |

| Grading chart<br>Grading chart  |                      |                            |          |                                        |  |
|---------------------------------|----------------------|----------------------------|----------|----------------------------------------|--|
| group                           | degree               | Appreciation               | Tags (%) | definition                             |  |
|                                 | A - Excellent        | privilege                  | 90 - 100 | Outstanding Performance                |  |
|                                 | <b>B</b> - Very Good | Very good                  | 80 - 89  | Above average with some errors         |  |
| An-Najah<br>Group<br>(50 - 100) | <b>C</b> - Good      | Good                       | 70 - 79  | Proper work with noticeable errors     |  |
|                                 | D - Satisfactory     | medium                     | 60 - 69  | Fair but with significant shortcomings |  |
|                                 | E - sufficient       | Acceptable                 | 50 - 59  | The work meets the minimum standards   |  |
| Group failure<br>(0 – 49)       | FX - Failed          | Deposit (in<br>(processing | (45-49)  | More work required but credit granted  |  |
|                                 | F - Failed           | Failure                    | (0-44)   | Large amount of work required          |  |
|                                 |                      |                            |          |                                        |  |

Note: Signs that are more than 0.5 decimal places greater than or below the full mark will be rounded higher or lower (for example, a score of 54.5 will be rounded to 55, while a mark of 54.4 will be rounded to 54. The university has a policy of not tolerating "imminent traffic failure", so the only modification to the marks granted by the original mark(s) will be the automatic rounding described above.