A shublic of treat the schuler		Unit Description Form Course Description Form Faculty of Engineering / Department of			n m /		
		Unit Infor	mation				
	1	Course Inf	ormation				
Unit Title	Eng	ineering Mecha	nics		Unit delivery		
Unit Type		fundamental		نظريه 🛛			
Unit Code			حاضر ⊠ الدغتير ⊠				
ECTS Credits			المحتبر الم				
/ ساعة) SWL (SEM					عملي 🗖 Seminar 🗌		
Unit level				Delivery Semester			
Department of	Department of Administration		College		Faculty of Engineeri		
Unit Commander	Hussein Amir Muhammad Aljawad		E-mail Address	hussein.aljawad@uowa.edu.ic		vad@uowa.edu.iq	
Title of Unit Commander teacher		Unit Com	Unit Commander Qualifications doctor		doctor		
Unit Teacher		E-mail Address					
Peer F	Peer Reviewer Name		E-mail Address			E-mail Address	
Date of accreditation of the Scientific Committee		26/9/2024	Version nu	ımber		1.0	

Relationship with other units Relationship with other subjects				
Prerequisites Unit	No	Semester		
Common Requirements Unit	No	Semester		

Unit objectives, learning outcomes and how-to contents					
Course	Course objectives, learning outcomes and instructional contents				
	Objectives of the Engineering Mechanics Unit:				
	Introduce students to the basic concepts of geometric mechanics and understand				
	Newton's laws of motion.				
	Enable students to analyze mechanical systems using the principles of equilibrium				
	and forces.				
Objectives of the Unit	Enhance the ability to solve problems related to moments, stresses and flexibility.				
Course Objectives	Train students to apply engineering concepts in the design and analysis of machines				
	and structures.				
	Develop critical thinking and analytical skills in the study and analysis of mechanical				
	systems.				
	• Qualify students to understand the practical applications of engineering mechanics				
	in engineering and science.				
	Engineering Mechanics Unit Learning Outcomes:				
	Understanding basic concepts: The student will be able to grasp the basic concepts				
	and laws of engineering mechanics, including Newton's laws and mechanical analysis.				
	Analysis of forces and equilibrium: The student becomes able to analyze the forces				
	acting on different systems and apply the conditions of equilibrium. Calculation of				
Unit Learning	moments and stresses: The student can calculate moments and stresses in different				
Outcomes	materials and structures.				
	Application of engineering principles: The student applies engineering concepts in the				
Learning outcomes of	design and analysis of machines and structures.				
the course	Mechanical problem solving: The student acquires the ability to solve problems using				
	methods				
	Analytical and mathematical modeling.				
	Technical communication: The student can prepare technical reports and present the				
	results of engineering analysis effectively.				
	Critical thinking: The student develops critical and creative thinking skills in dealing with the shelleness of engine engine mechanics				
	with the challenges of engineering mechanics.				
	Define the basic concepts of geomechanics and Newton's laws.				
	Analysis of forces and equilibrium in different engineering systems.				
Indicative Contents	Calculate moments and centers of gravity in composite objects.				
Indicative Contents	The study of stress and strain in materials and structures.				
	Analysis of mechanical structures such as bridges and frame				
	Practical applications of engineering mechanics in the design and analysis of				
	machines.				

Learning and Teaching Strategies				
Learning and Teaching Strategies				
Strategies	The learning and teaching strategy of the Engineering Mechanics Unit includes theoretical lectures to explain basic concepts, and solving practical exercises to enhance applied understanding. Interactive discussions and group projects are used to develop analytical and problem-solving skills. In addition, technology and simulation software are employed to illustrate engineering concepts and their applications.			

Student Workload (SWL) The student's academic load is calculated for 15 weeks						
SWL منظم (h / sem) Regular academic load of the student during the semester	64	SWL regulator(h/s) Regular student load per week	4			
SWL غیر منظم (h / sem) Irregular academic load of the student during the semester	61	Unregulated SWL (h/s) Irregular student academic load per week	4			
SWL (h / sem) إجمالي The student's total academic load during the semester			125			

Unit Evaluation Course Evaluation						
As Time/Number Weight (tags) Week due Related learn outcor						
	Contests	2	10% (10)	5, 10	LO #1 , 2, 10 and 11	
Formative Assessment	Assignments	2	10% (10)	2, 12	LO #3 , 4, 6 and 7	
	Projects /Laboratory.	1	10% (10)	continuous	every	
	report	1	10% (10)	13	LO #5 , 8 and 10	
Final	Midterm Exam	2 hr	10% (10)	7	LO #1-7	
Assessment	Final Exam	2 hours	50% (50)	16	every	
		Overall Rating	100% (100 degree)			

	Delivery Plan (Weekly Curriculum) Theoretical Weekly Curriculum	
week		Covered Material
Week 1		Principles of Statistics
Week 2		Power Systems Results
Week 3		Power Systems Results
Week 4		Equilibrium of power systems
Week 5		Equilibrium of power systems
Week 6		Friction
Week 7		Friction

Learning and Teaching Resources Learning and Teaching Resources				
	text Available in the library?			
Required texts	e-Engineering Mechanics Static 5 13edition by Hibbeler-12- Engineering Mechanics Static 10 Engineering Mechanics Static 8edition by Singer Strength of Material by Pytel and Singer	Yes		
Recommended texts		Yes		
Websites				

		Grading chart			
Grading chart					
group	degree	Appreciation	Tags (%)	definition	
	A - Excellent	privilege	90 - 100	Outstanding Performance	
An-Najah	B - Very Good	Very good	80 - 89	Above average with some errors	
Group (50 - 100)	C - Good	Good	70 - 79	Proper work with noticeable error	
	D - Satisfactory	medium	60 - 69	Fair but with significant shortcomings	
	E - sufficient	Acceptable	50 - 59	The work meets the minimum standards	
Group failure (0 – 49)	FX - Failed	Deposit (in (processing	(45-49)	More work required but credit granted	
	F - Failed	Failure	(0-44)	Large amount of work required	

Note: Signs that are more than 0.5 decimal places greater than or below the full mark will be rounded higher or lower (for example, a score of 54.5 will be rounded to 55, while a mark of 54.4 will be rounded to 54. The university has a policy of not tolerating "imminent traffic failure", so the only modification to the marks granted by the original mark(s) will be the automatic rounding described above.