

Unit Description Form

Course Description Form

Faculty of Engineering / Department of

Unit Information Course Information biochemistry **Unit Title Unit delivery** fundamental **Unit Type** نظریه 🛛 حاضر 🛛 BME-11-07 **Unit Code** المختبر 🛛 **ECTS Credits** 8 تعليمي 🔲 عملی 🗆 / ساعة) SWL **200** □ Seminar SEM) **Unit level** 4 **Delivery Semester Biomedical Department of Administration** College Faculty of Engineering Engineering E-mail Unit Mariam Abdullah Saeb Mayram.ab@uowa.edu.iq Commander Address **Title of Unit Commander Assistant Lecturer Unit Commander Qualifications** Master E-mail **Unit Teacher Address** E-mail **Peer Reviewer Name** E-mail Address name **Address** Date of accreditation of the 26/9/2024 Version number 1.0 **Scientific Committee**

Relationship with other units Relationship with other subjects						
Prerequisites Unit	No	Semester				
Common Requirements Unit	No	Semester				

Unit objectives, learning outcomes and how-to contents Course objectives, learning outcomes and instructional contents					
Objectives of the Unit Course Objectives	1. To know the types of food particles distinguish their properties. 2. To understand the structure of chemical molecules 3. This course deals with the basic concept of proteins. 4. This is the basic theme of all organic and inorganic molecules of the body. 5. Develop skills to deal with concentration. 6. Know the types of tools used in diagnosis.				
Unit Learning Outcomes Learning outcomes of the course	 Learn about proteins and amino acids. Summarizing what carbohydrates are. Learn about the function of enzymes. discuss the most important enzymes that play a vital role in the mechanism, Discuss the characteristics of prteins in each system Explanation of circulatory lipids and tissues describe the importance of adipose tissue and other organ Discuss the most important dyes used in diagnosis Description of immunohistochemistry technique 				
Indicative Contents Indicative Contents	The instructional content includes the following. Fat metabolism of fats, fat structure, fat synthesis, alternative pathway, lipid degradation, fatty acids [12 hours]. Carbohydrates, glucose metabolism, glucose structure, glycolysis, inhibitory cycles, glycogen synthesis, glucose formation [12 hours]. Proteins, protein metabolism, protein synthesis, protein stimulation, anabolic proteins, protein fate, amino acids. [12 hours]. Hormones hormone synthesis, types of hormones, hormone function, hormone receptors, pituitary hormones. [20]hour].				

Learning and Teaching Strategies						
	Learning and Teaching Strategies					
The main strategy that will be adopted in delivering this module is to ensure students to prepare for thawing, measuring concentration and laboratory to this will be achieved through interactive classrooms and tutorials and by contact the type of simple experiments that include some sampling activities of in						

Student Workload (SWL) The student's academic load is calculated for 15 weeks				
SWL منظم (h / sem) Regular academic load of the student during the semester	123	SWL regulator(h/s) Regular student load per week	9	
SWL غير منظم (h / sem) Irregular academic load of the student during the semester	77	Unregulated SWL (h/s) Irregular student academic load per week	6	
إجمالي SWL (h / sem) The student's total academic load during the semester			200	

Unit Evaluation Course Evaluation						
	As	Time/Number	Weight (tags)	Week due	Related learning outcomes	
	Contests	2	10% (10)	5, 10	LO #1 , 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO #3 , 4, 6 and 7	
Formative Assessment	Projects /Laboratory.	1	10% (10)	continuous	every	
	report	1	10% (10)	13	LO #5 , 8 and 10	
Final	Midterm Exam	2 hr	10% (10)	7	LO #1-7	
Assessment	Final Exam	2 hours	50% (50)	16	every	
	Overall Rating 100% (100 degree)					

Delivery Plan (Weekly Curriculum) Theoretical Weekly Curriculum				
week	Covered Material			
Week 1	Introduction to Chemistry Preparation of solutions, molars, molars, reagents, acids			
Week 2	Alkaline, dielectric solution, concentration, titration			
Week 3	Proteins , protein metabolism , protein synthesis , protein catalysis , protein synthesis , protein fate , amino acids			
Week 4	Amino acid reaction, the relationship of amino acids with other molecules Protein synthesis, translation, transcription, globulin, albumin			
Week 5	Liver function tests, bilirubin, GOT and AST , ALP , kidney function tests, urea, creatinine and uric acid			
Week 6	Lipid metabolism, lipid synthesis, lipid synthesis, alternative pathway, lipid degradation, fatty acids			
Week 7	Midterm Exam			

Week 8	Cholesterol, triglycerides, HDL, LDL, ketone bodies, bile salt, lipase		
Week 0	Carbohydrates, glucose metabolism, glucose synthesis, glycolysis, inhibitory cycles, glycogen		
Week 9	synthesis, glucose formation		
Week 10	Diabetes, hyperglycemia, HbA1C, fasting glucose, fructose, sucrose, lactose		
Week 11	Enzymes, Enzyme metabolism, Enzyme types, Enzyme function, Enzyme synthesis		
Week 12	Liver enzymes, kidney enzyme, digestive enzyme, coenzyme, glycolysis enzymes		
W. J. 42	Hormones Hormone Synthesis , Types of Hormones , Hormone Function , Hormone Receptors ,		
Week 13	Pituitary Hormones		
Week 14	Thyroid hormones, Adrenal hormones, sex hormones, digestive hormones, pinal hormones		
Week 15	DNA, RNA, guanine, thiamine, cytosine, adenine, uracil		
Week 16	Preparatory week before the final exam		

Learning and Teaching Resources Learning and Teaching Resources				
text Available i				
Required texts	Clinical Biochemistry, (8 editions), by Leipencotts	Yes		
Recommended texts		Yes		
Websites				

				Grading chart		
	Grading chart					
group	degree	Appreciation	Tags (%)	definition		
	A - Excellent	privilege	90 - 100	Outstanding Performance		
An-Najah	B - Very Good	Very good	80 - 89	Above average with some errors		
Group	C - Good	Good	70 - 79	Proper work with noticeable errors		
(50 - 100)	D - Satisfactory	medium	60 - 69	Fair but with significant shortcomings		
	E - sufficient	Acceptable	50 - 59	The work meets the minimum standards		
Group failure (0 – 49)	FX - Failed	Deposit (in (processing	(45-49)	More work required but credit granted		
	F - Failed	Failure	(0-44)	Large amount of work required		

Note: Signs that are more than 0.5 decimal places greater than or below the full mark will be rounded higher or lower (for example, a score of 54.5 will be rounded to 55, while a mark of 54.4 will be rounded to 54. The university has a policy of not tolerating "imminent traffic failure", so the only modification to the marks granted by the original mark(s) will be the automatic rounding described above.