Warith Al-Anbiya University / College of Engineering / Department of Biomedical Engineering Course Description

Course Description Form

1. Course Name:					
Mechanics of materials II					
2. Course Code:					
WBM-32-02					
3. Semester / Year:					
Semester					
4. Description Preparation Date:					
19/3/2024					
5. Availa	ble A	Attendance Forms:			
Preser	nce ir	ו the classroom			
6. Numbe	er of (Credit Hours (Total) / Number of Units (Total)			
45 h/ 2	2 uni	ts			
7. Cours	e ad	ministrator's name (mention all, if more than one name)		
Name:	: Hus	sain Amire Aljawad			
Email:	Hus	<u>sein.aljawad@uowa.edu.iq</u>			
8. Course	e Obj	ectives			
Course Objectiv	ves	The aim of teaching the curriculum for this subject is to learn the	asics		
		of the resistance of materials to external forces and pressures and how			
		to calculate loads, stresses and other mechanical issues and their effect			
		on the materials of objects internally. Materials force field, also known			
		as materials mechanics, refers to various methods for calculating			
		columns. Methods used to predict the response of a structure u	inder		
		loading and its susceptibility to different failure modes take	into		
		account material properties such as yield strength, ultimate strength,			
		Young's modulus, and Poisson's ratio.			
9. Teaching and Learning Strategies					
Strategy 1- Making the student able to der		laking the student able to demonstrate real knowledge of engineer	onstrate real knowledge of engineering		
	concepts related to materials mechanics during the academic level and their				
	applications in the fields of biomedical engineering.				
	such as stresses, ductility, bending moments, cutting force, and other concent				
	3- Learn and understand solution methods and mathematical applications in				
	solv	ing applications industry problems in the field of biomedicine.			

1

	4- Learn and apply the laws and formulas that the student learns from numer
	examples, which make him able to understand the future problems that will
	faced in medical engineering industries and applications.
Course	Structure

10. Course Structure							
Week	Hours	Required Learning	Unit or subject	Learning	Evaluation		
		Outcomes	name	method	method		
1	3	Units and common principles And Analysis of Internal Forces and Stresses	Units and common principles, SI Units (System International Units), Types of Support in Structure, Types of Loads in Structures, Types of Beams in Structures, Determinate and Indeterminate Problems. Analysis of Internal Forces and Stresses, Introduction, Analysis of Internal Forces (Three- dimensional system (3D), Two- dimensional system (2D)).	Presented the lectures and explain it.	Daily exams + classwork		
2	3	Normal stress And Shear stress and safety Factor	Normal stress, Simple Normal Stress, Tensile Stress, Compressive Stress, Beam Stress. Shear stress and safety Factor, Simple Shear Stress, Direct shear stress, Double shear stress, Punching shear stress, Allowable and Factor of Safety.	Presented the lectures and explain it.	Daily exams + classwork		

3+4	3	Torsion of Circular Shaft And Torsion of non- circular section	Torsion of Circular Shaft, Introduction, Torsion, Torsional shear stress, Angle of Twist, Polar Moment of Inertia, Composite Shaft,	Presented the lectures and explain it.	Daily exams + classwork
			Power Transmitted by Shaft. Torsion of circular shaft 2, Examples and Solutions. Torsion of non- circular sections, Shear Stress and Angle of Rotation.		
5-7	3	Thin walled pressure vessels	Thin walled pressure vessels, Types of stresses in Cylindrical thin- walled pressure vessels, Cylindrical Thin-Walled Pressure Vessels, Tangential (Hoop or Circumferential) Stress, Longitudinal Stress, Spherical Shell.	Presented the lectures and explain it.	Daily exams + classwork
8	3	Simple Strain and Deformations of Axially Loaded Members	Simple Strain and Deformations of Axially Loaded Members, Simple Strain, Sign Convention, Stress-Strain Diagram, Hooke's Law, Poisson' s Ratio, Cases of Poisson's Ratio.	Presented the lectures and explain it.	Daily exams + classwork
9+10	3	Deformation of axially loaded members	Deformation of axially loaded members, Case 1: prismatic bar, Case 2: Non-prismatic bar, Case 3: Bar	Presented the lectures and explain it.	Daily exams + classwork

			with v sectio varyir	varying cross- nal and ng axial force		
11+12	3	Statically indeterminate problems	Statically indeterminate problems, Examples and Solutions.		Presented the lectures and explain it.	Daily exams + classwork
13	3	Thermal stresses and strains	Thermal stresses and strains, Thermal strain, Thermal Deformation.		Presented the lectures and explain it.	Daily exams + classwork
14-15	3	The Columns	The Columns, Definition, The Critical load of column, Radius of Gyration.		Presented the lectures and explain it.	Daily exams + classwork
11.	Course E	Evaluation	I		L	1
 Theoretical lectures. Discussion Tutorials. Application in group to activate the team spirit at work 						
12. Learning and Teaching Resources						
Required textbooks (curricular books, if any) MECHANICS OF MATERIALS/ R. C. HIBBELER					IALS/ R. C.	
Main re	Main references (sources)			MECHANICS OF MATERIALS, E. J. HEARN		
Recommended books and references (scientific journals, reports)				Strength of material/schaums outline/William Nash		
Electronic References, Websites						