Course Description Form

1. Course Name:	
-----------------	--

Reinforced Concrete Design

2. Course Code:

WCV-31-01

3. Semester / Year:

3rd year

4. Description Preparation Date:

28-09-2024

5. Available Attendance Forms:

Regular students

6. Number of Credit Hours (Total) / Number of Units (Total)

120/6

7. Course administrator's name (mention all, if more than one name)

Name: Mustafa Kareem Hamzah

Email: Mustafa.k.hamzah@gmail.com

8. Course Objectives

- Course Objective: 1 Designing reinforced concrete beams in terms of bending, shear and torsion.
 - 2- Determining the deflection in beams
 - 3- Designing and analyzing of slabs
 - 4- Analyzing and designing structural columns.
 - 5- Being able to know the appropriate length of reinforcing steel and the places where the steel is cut practically.

9. Teaching and Learning Strategies

Strategy

Homework **Feedback** Brainstorm

10. Course Structure

Course Description

Week	Hours	Required Learning	Unit or subject	Learning	Evaluation
		Outcomes	name	method	method
1-5	20	Introducing students to the basic principles of reinforced concrete designs, identifying the properties of concrete and reinforcing steel, knowing the behavior of beams against the stresses imposed on them, designing a single-reinforced beam.	Introduction to Reinforced Concrete Structures Fundamentals of Reinforced concrete Design Concrete and Steel materials Flexural Beam Behavior Single Reinforcement beam	Theoretical + Applied + Movie Show	1. Quizzes 2. Term exams 3.Extracurricular assignments 4. Reports + accounts of various projects
6-10	20	Ability to design Double reinforcement beam , T-beam design, Identify beam behavior against shear stresses, Beam design against shear stress	Double Reinforcement beam T-beam Design Shear behavior in beam Shear design for beam	+ Applied + Movie Show	1. Quizzes 2. Term exams 3.Extracurricular assignments 4. Reports + accounts of various projects
11-15	20	Calculating the torsional moment and the resulting stresses and designing the beam against torsional stresses, designing the beam against combined stresses between shear and torsion, knowing the effect of deflection on the lintel and how to calculate it	Torsion behavior in beam Torsion design for beam Shear-Torsion Design Serviceability and Deflection	Theoretical + Applied + Movie Show	1. Quizzes 2. Term exams 3.Extracurricular assignments 4. Reports + accounts of various projects
16-20	20	Study of load transfer between structural elements, knowledge of the slab's behavior against the loads imposed on it, knowledge of the	Load transfer in structural members Behavior of Reinforced concrete slabs under loading	Theoretical + Applied + Movie Show	1. Quizzes 2. Term exams 3.Extracurricular assignments 4. Reports + accounts of various projects

Course Description

		design of a one-	One-way slab		
		way slab	design		
21-25	20	Knowing the	Two-way slab	Theoretical	1. Quizzes
		methods of	design		2. Term exams
		designing a two-		+	3.Extracurricular
		way slab		Applied	assignments
					4. Reports +
				+	accounts of
				Movie Show	various projects
26-30	20	Knowing the	Behavior of	Theoretical	1. Quizzes
		column's behavior	Reinforced concrete		2. Term exams
		towards the loads	column under	+	3.Extracurricular
		applied to it,	loading	Applied	assignments
		identifying the	Short column design		4. Reports +
		methods of	Slender Column	+	accounts of
		designing short and	Design	Movie Show	various projects
		long structural			
		columns			

11. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

12. Learning and Teaching Resources

Required textbooks (curricular books, if an	Ç,			
Main references (sources)	-Design of Reinforced Concrete			
nº o	Structures by Ni <mark>l</mark> son			
(90)	-ACI-Code-318M			
Recommended books and reference	ces			
(scientific journals, reports)	وارتاا و			
Electronic References, Websites				
2017				

Course Description

