

MODULE DESCRIPTOR FORM

Module Information						
Module Title	Fundamentals of Aeronautics			Modu	ule Deliver	y
Module Type	CORE OF ENGINE					
Module Code	AIE244			15	Theory Lab	
ECTS Credits	4					
SWL (hr/sem)	100 つ			¢		
Module Level		2	Semester of D		у	4
Administering Department		Aircraft Engineering	College	Engineer	ing	
Module Leader	Ahmad <mark>Sa</mark> dd	y Mohamad	e-mail	ahmad. <mark>sa</mark> ddy@uow		a.edu.iq
Module Leader's Acad. Title		Assist. Prof.	Module Leader's Qualification			Ph.D.
Module Tutor	dule Tutor None		e-mail	None		
Peer Reviewer Name			e-mail			
Review Committee Approval		01/01/2025	Version N	umber	2024	

Relation With Other Modules						
Prerequisite module	AIE232	Semester	3			
Co-requisites module	None	Semester				
Module Aims, Learning Outcomes and Indicative Contents						
Module Aims1. To help students learn as much introduction to flight and flight theory principle as possible in which this subject is regarded as the base for all aeronautic subjects.						

	2. The development of the basic principles of aeronautics is the entry point for consolidating the necessary principles of specialized aircraft mechanics engineering subjects and providing the necessary materials for them, which include topics of aerodynamic, flight theory, design, control and stability of aircraft, gas dynamic, jet propulsion theory and aircraft performance.
Module Learning Outcomes	 Knowledge and understanding. Standard Atmosphere. Principles of Aviation. Aerodynamic forces and moments on the aircraft. Wings and infrasound sections - and ultrasonic / characterization and characteristics. Aerodynamic forces in stable horizontal flight. Performance curves in terms of propulsion and performance curves in terms of power. Subject-specific skills. Explanation of the flight principles of fixed-wing and rotary-wing aircraft (helicopters). Determining the required thrust, the available thrust, the lift to drag ratio. Thinking Skills. To fully comprehend the scientific material and develop students' engineering sense. Understand and comprehend the applications of the scientific material on the fuselage (structure), power station (engines), control surfaces, wing, aircraft systems and instrumentation. Understand the limits of the aircraft's performance. To prepare students for psychological connection and a feeling of satisfaction, happiness and reassurance for the department and the branch in which they are studying General and Transferable Skills.
Indicative Contents	Lectures are used to deliver the fundamental knowledge in relation to various aspects of aerodynamic characteristics for aircraft as well as their influence in determining the aircraft performance for atmospheric flight (All Outcomes).
	Indicative content includes the following.

	Part A - Fundamentals Aircraft NomenclatureHistory of aeronautics; Physical properties of atmosphere; Airfoil lift, drag and moments; Airfoil data; Compressibility correction; Finite wing aerodynamics; Induced drag; High-lift mechanisms. [25 hrs]Part B - Aircraft Performance
	Drag polar; Typical steady level flight; Thrust and power requirements for cruising flight; Altitude effects; Indicated and True Air Speed. [27 hrs]
	Learning and Teaching Strategies
Strategies	Develop the student's ability to understand aircraft theory and arrange knowledge related to aircraft mechanics from a correct and logical understanding and analysis of the various sciences related to aircraft, understanding hypotheses, and interpreting the performance of the aircraft physically, to obtain the initial knowledge necessary to understand the specialized topics in the field of aircraft mechanics engineering. Develop the student's ability and familiarize him with the pattern of exam questions and the arrangement and sequence of the solution in order to be able to correctly analyze the question and thus outline the appropriate solution sequence through method books, auxiliary books and theoretical lectures, in addition to solving exercises and getting used to the method of reaching the correct solution.

Student Workload (SWL)						
Structured SWL (h/sem)	48 2017	Structured SWL (h/w)	3			
Unstructured SWL (h/sem)	52	Unstructured SWL (h/w)	3.5			
Total SWL (h/sem)	100					
كليــــــــــــــــــــــــــــــــــــ						

Module Evaluation						
		Time/ Number	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	4	20% (20)	3,6,9,12	All	
Formative assessment	Assignments	2	10% (10)	5, 10	All	
	Projects / Lab.	Lab. 4	10% (10)	Continuous	All	
	Report	-	-	-	-	
Summative	Midterm Exam	2 hrs.	10% (10)	7	All	
assessment	Final Exam	3 hrs.	50% (50)	16	All	
Total assessn	nent		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Fundamentals: Introduction History of aeronautics Pilot's Operating Handbook			
Week 2	Standard atmosphere (ISA): The atmosphere. Physical properties of gases in atmosphere.			
Week 3	Airplane types: Airplane classification. Airplane parts.			
Week 4	Nomenclature: Airfoils-Nomenclature. Wings-Nomenclature. Flaps. Types of airfoils.			
Week 5	Wings and airfoils characteristics: Mean aerodynamic chord. Wing Area. Aerodynamic center. Center of pressure.			
Week 6	Aerodynamic forces and moments on airplane: The airplane as a rigid body. Airplane axis system. Forces and moments.			
Week 7	Flight principles: Bernoulli's principle. Venturi effect. Relative wind.			
Week 8	Lift: Lift coefficient. Lift curves characteristics. Change of lift coefficient with the angle of attack.			
Week 9	Drag: Drag estimation at low speeds. Drag estimation at high speeds. Types of drag: Parasite drag. Induced drag. Wave drag.			
Week 10	Aerodynamic forces on steady level flight: Lift force. Drag force.			

	Gravity force.
	Thrust force.
	Level flight Performance:
Week 11	Steady level flight.
	Typical steady level flight.
	Cruise flight.
	Holding flight.
Week 12	Mach number.
	Indicated Air Speed.
	True Air Speed.
	Performance curves in terms of thrust:
Week 13	Change of required thrust with airspeed.
WEEK 15	Change of required thrust with altitude.
	Change of available thrust with airspeed and altitude.
	Performance curves in terms of power:
Week 14	Change of required power with airspeed.
	Change of required power with altitude.
Week 15	Change of available power with airspeed and altitude.
WEEK IS	Minimum power required.
Week 16	Final Exam
	Star of a contraction

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1	Exp. 1: Atmosphere calculator				
Week 2	Exp. 2: Airfoil design and analysis				
Week 3	Exp. 3: Wing design and analysis				
Week 4	Exp. 4: Airplane Performance				
Week 5	Exp. 5: Wind Tunnel				
Week 6	Exp. 6: 2017				
Week 7	Exp. 7:				

_ كليكم الفلدلنيكم					
Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	John D. Anderson, "Introduction to Flight", McGraw- Hill, 7th Edition, 2012	Yes			
Recommended Texts	W. Austyn Mair, David L. Birdsall, "Aircraft performance", Cambridge University Press, 2003	Yes			
Websites					

GRADING SCHEME						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
a a	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	مقبول بقرار	(45-49)	More work required but credit awarded		
(0-49)	F – Fail	راسب	(0-44)	Considerable amount of work required		
Note:						

APPENDIX:

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

