MODULE DESCRIPTOR FORM | Module Information | | | | | | | |----------------------------------|--|-----------------------|----------------------------|------|------------------------|-------| | Module Title | MATHEMATICS | | | Modu | Module Delivery | | | Module Type | BASIC | | | | ☑ Theory
☑ Tutorial | | | Module Code | MPH202 | | | × | | | | ECTS Credits | | 6 | | | | | | SWL (hr/sem) | | 150 | | | | | | Module Level | | 1 | Semester of Delivery | | 2 | | | Administering De | Administering Department Medical Physics | | College Sciences | | ge Sciences | | | Module Leader | Saja I | Basim Ali | e-mail | | Saja.b@uowa.edu.iq | | | Module Leader's | Acad. Title | Assistant
Lecturer | Module Leader's Qualificat | | ation | MS.c. | | Module Tutor | Saja I | Basim Ali | e-mail Saja.b@uowa.edu.iq | | uowa.edu.iq | | | Peer Reviewer Name | | Ali Nadhom
Munif | e-mail Ali.n@uow | | uowa.edu.iq | | | Review Committee Approval | | 2024-04-19 | Version Number V 1.0 | | V 1.0 | | | Relation With Other Modules | | | | | |-----------------------------|----|----------|---|--| | Prerequisite module | No | Semester | - | | | Co-requisites module | No | Semester | - | | Department Head Approval و منعاد عسي نونل المعاد نو Dean of the College Approval | Module Aims, Learning Outcomes and Indicative Contents | | | | | | |--|--|--|--|--|--| | | This course aims at: | | | | | | Module Aims | Developing a solid understanding of fundamental mathematical concepts and their applications. Fostering critical thinking and problem-solving abilities by engaging students in analyzing complex mathematical problems and applying appropriate strategies and techniques to arrive at logical solutions. Enhancing students' ability to communicate mathematical ideas effectively, both orally and in written form, through clear explanations, rigorous proofs, and mathematical modeling. Promoting a deep understanding of mathematical concepts, principles, and relationships by encouraging students to explore mathematical structures, patterns, and connections within and across different areas of mathematics. Cultivating mathematical reasoning and logical thinking skills by providing opportunities for students to construct and evaluate mathematical arguments, justify mathematical claims, and make conjectures. Encouraging students to appreciate the beauty and elegance of mathematics by exposing them to diverse mathematical topics, including geometry, algebra, calculus, statistics, and discrete mathematics. Promoting mathematical literacy and numeracy by helping students develop a | | | | | | Module Learning
Outcomes | practical understanding of mathematical concepts and their applications. The student would be able to: 1- Master the proficiency in applying differential calculus concepts, including derivatives and rates of change. 2- Have the competence in utilizing integral calculus techniques to find areas, volumes, and solve related problems. 3- Analyze mathematical models involving differentiation. 4- Master the solving of practical problems using integral calculus. 5- Improve critical thinking and problem-solving skills through the study of differential mathematics. 6- Develop mathematical reasoning and logical thinking abilities in the context of calculus. | | | | | | Indicative Contents | Indicative content includes the following: Introduction to differentiation: limits, derivatives, and their basic properties. Applications of differentiation: rates of change, optimization, and related rates. Introduction to integration: antiderivatives, definite and indefinite integrals. Techniques of integration: substitution, integration by parts, and partial fractions. Applications of integration: areas under curves, volumes, and solving practical problems. | | | | | | Learning and Teaching Strategies | | | | | |----------------------------------|---|--|--|--| | Strategies | Lectures: Engaging and interactive lectures to introduce new concepts, theories, and problem-solving techniques. Tutorials: Small group sessions where students can actively participate in solving mathematical problems, reinforcing their understanding and receiving feedback. Practical Exercises: Assignments and homework that provide opportunities for students to practice and apply the learned mathematical principles. Collaborative Learning: Group projects and discussions that encourage peer-to-peer interaction and collaborative problem-solving, fostering a deeper understanding of mathematical concepts. Technology Integration: Utilizing mathematical software, computer simulations, and online resources to enhance visualization and exploration of mathematical concepts. | | | | | Student Workload (SWL) | | | | | |--------------------------|-----------------------------|--|---|--| | Structured SWL (h/sem) | 42 Structured SWL (h/w) 2.8 | | | | | Unstructured SWL (h/sem) | 105 Unstructured SWL (h/w) | | 7 | | | Total SWL (h/sem) | 147+ 3 final =150. | | | | | Module Evaluation | | | | | | |-------------------------|---------------|-------------|----------------|----------|------------------------------| | | | Time/Number | Weight (Marks) | Week Due | Relevant Learning
Outcome | | | Quizzes | 2 | 10% (5) | 3,8 | 1,3 | | Formative
Assessment | Projects | 1 | 5% (5) | 13 | 2,4,6 | | | Online Assig. | 4 | 20% (5) | 2,5,9,14 | 1,4,5,6 | | | Reports | 1 | 5% (5) | 5,6 | 2,4,5,6 | | Summative | Midterm Exam | 1 hr. | 10% (10) | 8 | 1 – 7 | | Assessment | Final Exam | 3 hrs. | 50% (50) | 15 | All | | Total Assessment | | | 100 | | | | Delivery Plan (Weekly Syllabus) | | | | | |---------------------------------|---|--|--|--| | | Material Covered | | | | | Week 1 | Reviewing of Algebraic Concepts, Algebraic Expressions, Exponents and Logarithms. | | | | | Week 2 | Differentiation, Techniques of Differentiation, Functions and Graphs, H.W_1. | | | | | Week 3 | More Differentiation, Optimization Problems Using Derivatives, Problem-Solving. | | | | | Week 4 | Techniques of differentiation, Limits and Continuity, Class participation. | | | | | Week 5 | Applications of Derivatives, Solving First-Order Ordinary. | | | | | Week 6 | Continuity of functions H.W_2, Class participation. | | | | | Week 7 | Differential Equations, Applications of Differential Equations, Problem-Solving. | | | | | Week 8 | Mid-Term Exam. | | | | | Week 9 | Integration, Class Participation. | | | | | Week 10 | Antiderivatives and Indefinite Integration. | | | | | Week 11 | Techniques of Integration, Problem-Solving. | | | | | Week 12 | Applications of Integration, Class Participation. | | | | | Week 13 | Exponential and Logarithmic Functions. | | | | | Week 14 | Review and Assessment, Problem-Solving | | | | | Week 15 | Final Exam | | | | | Learning and Teaching Resources | | | | | | |---------------------------------|---|---------------------------|--|--|--| | | Text | Available in the Library? | | | | | Required Texts | Gilbert Strang, Calculus, Massachusetts Institute of Technology: Wellesley-Cambridge Press. | | | | | | Recommended | James Stewart, McMaster University 2008. United States of | | | | | | Texts | America. | | | | | | Websites | https://www.khanacademy.org/ https://www.mathsisfun.com/ https://www.mathsisfun.com/ https://www.youtube.com/@DrTrefor | | | | | ## **APPENDIX:** | GRADING SCHEME | | | | | | |-----------------------------|-------------------------|--------------|-----------|---------------------------------------|--| | Group | Grade | Marks | Marks (%) | Definition | | | | A - Excellent | Excellent | 90 - 100 | Outstanding Performance | | | g G | B - Very Good | Very Good | 80 - 89 | Above average with some errors | | | Success Group
(50 - 100) | C - Good | Good | 70 - 79 | Sound work with notable errors | | | | D - Satisfactory | Satisfactory | 60 - 69 | Fair but with major shortcomings | | | | E – Sufficient | Sufficient | 50 - 59 | Work meets minimum criteria | | | Fail Group | FX – Fail | Fail | (45-49) | More work required but credit awarded | | | $(0-49)^{-1}$ | \mathbf{F} – Fail | Fail | (0-44) | Considerable amount of work required | | | | | | | | | | Note: | | | | | | NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above. ملاحظة: هذا النموذج تم وضعه وتقديمه من قبل مديرية ضمان الجودة في وزارة التعليم العالي والبحث العلمي