MODULE DESCRIPTION FORM | Module Information | | | | | | | |------------------------------------|----------------------------------|--|-------------------------------------|---------------------------|--------------|-----------| | Module Title | Heat and Thermodynamic | | ics | Modu | ıle Delivery | | | Module Type | | Basic | | | | | | Module Code | | MPH2021 | | | ⊠Theroy | | | ECTS Credits | | 6 | | | Lab | | | SWL (hr/sem) | | 150 | | | | | | Module Level | | 2 | Semester | Semester of Delivery | | 1 | | Administering De | partment | Information Technology | College | College | of Science | | | Module Leader | Dr. Ismail Mo | hamed El-Dessouki | e-mail | | ismail.m@uow | a.edu.iq | | Module Leader's Acad. Title | | Lecturer | Module Leader's Qualification Ph.D. | | Ph.D. | | | Module Tutor | Module Tutor Ayman Mohammed Gabr | | e-mail | nail ayman.mo@uowa.edu.iq | | va.edu.iq | | Peer Reviewer Name | | Asst. Prof. Dr. Shaima
Hussein Noufal | e-mail shaymaa@uowa.edu.iq | | | | | Scientific Committee Approval Date | | 2024-09-17 | Version N | umber | V1.0 | | | Relation with other Modules | | | | | | | |--|------|----------|------|--|--|--| | Prerequisite module None Semester None | | | | | | | | Co-requisites module | None | Semester | None | | | | المحامدة وارث الانبيطية حكية العلوم الفيانية العلوم الفيانية العلوم الفيانية الطبياة **Department Head Approval** **Dean of the College Approval** | Modu | Ile Aims, Learning Outcomes and Indicative Contents | |---------------------------------|--| | 1. Module Aims Module Learning | Providing the student with knowledge of the system and laws of thermodynamics. Providing the student with knowledge of heat, temperature, and heat capacity. Providing the student with knowledge of temperature measurement methods and systems. Providing the student with knowledge of the relationship between types of heat capacities and how to measure and calculate them. Providing the student with knowledge of the three laws of thermodynamics. Providing the student with knowledge of the methods and laws of heat transfer. Providing the student with knowledge in the operation of the refrigerator and heat pump. Providing the student with knowledge of the various gas laws and the ideal gas. Providing the student with experience in energy conversions. Important: Write at least 6 Learning Outcomes, better to be equal to 10. Introducing the student to the distinction between the properties of different gases and the laws that govern the relationships between them. | | Indicative Contents | Introducing the student to the factors affecting the behavior of gases. Introducing the student to the possibility of converting matter into energy. Introducing the student to the operations that can be performed on different gases. Introducing the student to temperature scales and how to convert between them. Learning concepts of each theoretical lecture or groups of lectures. [SSWL= 28hrs] Lab. Lectures Learning concepts of each laboratory lecture or groups of lectures. [SSWL=30 hrs] Mid Exam =1hrs Final Exam =3hrs Total hrs = 62 | | Learning and Teaching Strategies | | | | | |----------------------------------|---|--|--|--| | | | | | | | Strategies | General and qualifying transferable skills (other skills related to employability and personal development). The ability to analyze, deduce and describe. To understand and comprehend the laws of energy conversion and transfer. Providing scientific material that relates to the scope of their work and is specialized as a medical physics department.se the strategy from the attached word file. | | | | | Student Workload (SWL) | | | | | | |--|----|------------------------|-----|--|--| | Structured SWL (h/sem) Structured SWL (h/w) 60 | | | | | | | Unstructured SWL (h/sem) | 87 | Unstructured SWL (h/w) | 5.8 | | | | Total SWL (h/sem) 147 + 3 final =150 | | | | | | | Module Evaluation | | | | | | | |----------------------|-----------------------|-------------|------------------|----------|---------------------------|--| | | | Time/Number | Weight (Marks) | Week Due | Relevant Learning Outcome | | | | Quizzes | 2 | 5%(10) | 4,8 | 2,4 | | | Formative | Home Work | 2 | 5%(10) | 6,10 | 1 | | | assessment | Onsite
Assignments | 2 | 5%(10) | 3,4 | 5,13 | | | | Report | 1 | 10%(10) | 5 | 3,5 | | | Summative assessment | Midterm
Exam | 2hr | 10% (10) | 7 | | | | assessment | Final Exam | 3hr | 50% (50) | 16 | | | | Total assessment | | | 100% (100 Marks) | | | | | | Delivery Plan (Weekly Syllabus) | | | | | |---------|---|--|--|--|--| | | Material Covered | | | | | | Week 1 | Introduction to Thermodynamics and Thermodynamic Concepts | | | | | | Week 2 | Behavior of Gases, Ideal and real gas | | | | | | Week 3 | Zeroth Law of Thermodynamics, Temperature and Temperature scales | | | | | | Week 4 | First Law of Thermodynamics | | | | | | Week 5 | Heat capacities of Ideal gas | | | | | | Week 6 | Heat Engines and second law of thermodynamic | | | | | | Week 7 | Mid. Exam | | | | | | Week 8 | Heat Pumps | | | | | | Week 9 | The Carnot Engine, Internal Combustion engine | | | | | | Week 10 | Entropy and Second Law of Thermodynamics | | | | | | Week 11 | Entropy and Performance of Heat Engines | | | | | | Week 12 | Third Law of Thermodynamics | | | | | | Week 13 | Maxwell's Relations, Cyclic rule, Applications of Maxwell's Relations | | | | | | Week 14 | Phase Transitions | | | | | | Week 15 | First order phase changes | | | | | | | Delivery Plan (Weekly Lab Syllabus) | | | | | |---------|--|--|--|--|--| | | Material Covered | | | | | | Week 1 | Find heat capacity of calorimeter | | | | | | Week 2 | Find volumetric expansion coefficient of liquid | | | | | | Week 3 | Find longitudinal expansion coefficient of metal | | | | | | Week 4 | Joule equivalent | | | | | | Week 5 | Find the latent temperature of melt ice | | | | | | Week 6 | Find specific heat of rigid body | | | | | | Week 7 | Find energy by using current and voltage | | | | | | Week 8 | Find heat capacity of calorimeter | | | | | | Week 9 | Find volumetric expansion coefficient of liquid | | | | | | Week 10 | Find longitudinal expansion coefficient of metal | | | | | | Week 11 | Joule equivalent | | | | | | Week 12 | Find the latent temperature of melt ice | | | | | | Week 13 | Find specific heat of rigid body | |---------|--| | Week 14 | Find energy by using current and voltage | | Week 15 | Find energy by using current and voltage | | Learning and Teaching Resources | | | | | |---------------------------------|---|---------------------------|--|--| | | Text | Available in the Library? | | | | Required Texts | Fundamentals of 1. Thermodynamics, by claus borgnakke Richard e. Sonntag Thermodynamics: Principles and Applications, by Frank C. | | | | | Recommended Texts | AndrewsYear, Publisher.n, | | | | | Websites | https://www.google.iq/books/edition/Thermodynamics_PrincipxJH0He MC?hl=en&gbpv=1&bsq=thermodynamics+principles+and+appermod | | | | | | ynamics+principles+and+applications+by+frank&printsec=frontcover | | | | | Grading Scheme | | | | | | |-----------------------------|-------------------------|--------------|------|-----------|---------------------------------------| | Group | Grade | التقدير | | Marks (%) | Definition | | | A - Excellent | Excellent | | 90 - 100 | Outstanding Performance | | Success Group
(50 - 100) | B - Very Good | Very Good | | 80 - 89 | Above average with some errors | | | C - Good | Good | | 70 - 79 | Sound work with notable errors | | (30 - 100) | D - Satisfactory | Satisfactory | | 60 - 69 | Fair but with major shortcomings | | | E - Sufficient | Sufficient | | 50 - 59 | Work meets minimum criteria | | Fail Group | FX – Fail | | Fail | (45-49) | More work required but credit awarded | | (0 – 49) | F – Fail | Fail | | (0-44) | Considerable amount of work required | | | | | | | | **Note:** Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.