MODULE DESCRIPTION FORM

Module Information						
Module Title	Heat and Thermodynamic		ics	Modu	ıle Delivery	
Module Type		Basic				
Module Code		MPH2021			⊠Theroy	
ECTS Credits		6			Lab	
SWL (hr/sem)		150				
Module Level		2	Semester	Semester of Delivery		1
Administering De	partment	Information Technology	College	College	of Science	
Module Leader	Dr. Ismail Mo	hamed El-Dessouki	e-mail		ismail.m@uow	a.edu.iq
Module Leader's Acad. Title		Lecturer	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Module Tutor Ayman Mohammed Gabr		e-mail	nail ayman.mo@uowa.edu.iq		va.edu.iq
Peer Reviewer Name		Asst. Prof. Dr. Shaima Hussein Noufal	e-mail shaymaa@uowa.edu.iq			
Scientific Committee Approval Date		2024-09-17	Version N	umber	V1.0	

Relation with other Modules						
Prerequisite module None Semester None						
Co-requisites module	None	Semester	None			

المحامدة وارث الانبيطية حكية العلوم الفيانية العلوم الفيانية العلوم الفيانية الطبياة

Department Head Approval

Dean of the College Approval

Modu	Ile Aims, Learning Outcomes and Indicative Contents
1. Module Aims Module Learning	 Providing the student with knowledge of the system and laws of thermodynamics. Providing the student with knowledge of heat, temperature, and heat capacity. Providing the student with knowledge of temperature measurement methods and systems. Providing the student with knowledge of the relationship between types of heat capacities and how to measure and calculate them. Providing the student with knowledge of the three laws of thermodynamics. Providing the student with knowledge of the methods and laws of heat transfer. Providing the student with knowledge in the operation of the refrigerator and heat pump. Providing the student with knowledge of the various gas laws and the ideal gas. Providing the student with experience in energy conversions. Important: Write at least 6 Learning Outcomes, better to be equal to 10. Introducing the student to the distinction between the properties of different gases and the laws that govern the relationships between them.
Indicative Contents	 Introducing the student to the factors affecting the behavior of gases. Introducing the student to the possibility of converting matter into energy. Introducing the student to the operations that can be performed on different gases. Introducing the student to temperature scales and how to convert between them. Learning concepts of each theoretical lecture or groups of lectures. [SSWL= 28hrs] Lab. Lectures Learning concepts of each laboratory lecture or groups of lectures. [SSWL=30 hrs] Mid Exam =1hrs Final Exam =3hrs Total hrs = 62

Learning and Teaching Strategies				
Strategies	 General and qualifying transferable skills (other skills related to employability and personal development). The ability to analyze, deduce and describe. To understand and comprehend the laws of energy conversion and transfer. Providing scientific material that relates to the scope of their work and is specialized as a medical physics department.se the strategy from the attached word file. 			

Student Workload (SWL)					
Structured SWL (h/sem) Structured SWL (h/w) 60					
Unstructured SWL (h/sem)	87	Unstructured SWL (h/w)	5.8		
Total SWL (h/sem) 147 + 3 final =150					

Module Evaluation						
		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2	5%(10)	4,8	2,4	
Formative	Home Work	2	5%(10)	6,10	1	
assessment	Onsite Assignments	2	5%(10)	3,4	5,13	
	Report	1	10%(10)	5	3,5	
Summative assessment	Midterm Exam	2hr	10% (10)	7		
assessment	Final Exam	3hr	50% (50)	16		
Total assessment			100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)				
	Material Covered				
Week 1	Introduction to Thermodynamics and Thermodynamic Concepts				
Week 2	Behavior of Gases, Ideal and real gas				
Week 3	Zeroth Law of Thermodynamics, Temperature and Temperature scales				
Week 4	First Law of Thermodynamics				
Week 5	Heat capacities of Ideal gas				
Week 6	Heat Engines and second law of thermodynamic				
Week 7	Mid. Exam				
Week 8	Heat Pumps				
Week 9	The Carnot Engine, Internal Combustion engine				
Week 10	Entropy and Second Law of Thermodynamics				
Week 11	Entropy and Performance of Heat Engines				
Week 12	Third Law of Thermodynamics				
Week 13	Maxwell's Relations, Cyclic rule, Applications of Maxwell's Relations				
Week 14	Phase Transitions				
Week 15	First order phase changes				

	Delivery Plan (Weekly Lab Syllabus)				
	Material Covered				
Week 1	Find heat capacity of calorimeter				
Week 2	Find volumetric expansion coefficient of liquid				
Week 3	Find longitudinal expansion coefficient of metal				
Week 4	Joule equivalent				
Week 5	Find the latent temperature of melt ice				
Week 6	Find specific heat of rigid body				
Week 7	Find energy by using current and voltage				
Week 8	Find heat capacity of calorimeter				
Week 9	Find volumetric expansion coefficient of liquid				
Week 10	Find longitudinal expansion coefficient of metal				
Week 11	Joule equivalent				
Week 12	Find the latent temperature of melt ice				

Week 13	Find specific heat of rigid body
Week 14	Find energy by using current and voltage
Week 15	Find energy by using current and voltage

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Fundamentals of 1. Thermodynamics, by claus borgnakke Richard e. Sonntag Thermodynamics: Principles and Applications, by Frank C.			
Recommended Texts	AndrewsYear, Publisher.n,			
Websites	https://www.google.iq/books/edition/Thermodynamics_PrincipxJH0He MC?hl=en&gbpv=1&bsq=thermodynamics+principles+and+appermod			
	ynamics+principles+and+applications+by+frank&printsec=frontcover			

Grading Scheme					
Group	Grade	التقدير		Marks (%)	Definition
	A - Excellent	Excellent		90 - 100	Outstanding Performance
Success Group (50 - 100)	B - Very Good	Very Good		80 - 89	Above average with some errors
	C - Good	Good		70 - 79	Sound work with notable errors
(30 - 100)	D - Satisfactory	Satisfactory		60 - 69	Fair but with major shortcomings
	E - Sufficient	Sufficient		50 - 59	Work meets minimum criteria
Fail Group	FX – Fail		Fail	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	Fail		(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.