MODULE DESCRIPTION FORM | Module Information | | | | | | | |------------------------------------|--|------------------|------------------------|---------------------------|--|-------| | Module Title | Physiology | | | Modu | le Delivery | | | Module Type | | Core | | | ☑ Theory | | | Module Code | MPH2025 | | | | ☑ Lecture☑ Lab☐ Tutorial☐ Practical☐ Seminar | | | ECTS Credits | 6 ECTS | | | | | | | SWL (hr/sem) | 150 | | | | | | | Module Level | | UG II | Semester of Delivery 1 | | 1 | | | Administering Department | | МРН | College | Type College Code | | | | Module Leader | Dargham Adel Obaid Hassoun | | e-mail | E-mail | | | | Module Leader's | Acad. Title | Assit. Lecturer | Module Lea | ader's Qu | der's Qualification Ph.D. | | | Module Tutor | karar H. Obaid Mohammed Abdul
Ali Hamza | | e-mail | Karar.h.obaid@uowa.edu.iq | | lu.iq | | Peer Reviewer Name | | Ali Hamid oraiby | e-mail | Ali.h@uowa.edu.iq | | | | Scientific Committee Approval Date | | 2024-9-17 | Version Nu | mber | 1.0 | | | Relation with other Modules | | | | | | |-----------------------------|--------|----------|------|--|--| | Prerequisite module | MPH103 | Semester | UG I | | | | Co-requisites module | None | Semester | None | | | معة وارث الانبيري المنظمة المنظمة العلوم الفيسزياء الطبيسة **Department Head Approval** **Dean of the College Approval** | Modu | le Aims, Learning Outcomes and Indicative Contents | |-----------------------------|---| | Module Objectives | To provide students with an understanding of the structure and function of a number of key physiological systems and their role in body homeostasis. To study the physiology of humans as a model for physiological processes in other organisms. To describe a range of tissues and physiological processes in humans at an introductory level. To relate physiological processes to their bases at cellular levels. To be able to understand and analyses experimental work in physiology. To be able to apply problem-solving skills to practical problems in physiology, including the use of mathematics and data analysis. | | Module Learning
Outcomes | To develop further practical biological skills introduced in this Physiology course Introductory knowledge of the cellular and biochemical processes which underlying physiological processes in humans. 2. Demonstrate an understanding of special mechanisms used to transport selected molecules unable to cross the plasma membrane on their own: carrier mediated; endocytosis; exocytosis. Describe the anatomy, physiology and control of a number of key physiological systems critical for the functioning of the human body. Basic knowledge of communications between cells is largely by extra cellular chemical messengers: paracrine, neurotransmitters and neurohormones. Explain principles and solve problems in human physiology. Introductory-level knowledge of physiology of major processes, such as cardiovascular system, nervous system, digestive system, respiratory system, endocrinology and reproductive system in human. Demonstrate an understanding of levels of organization of key physiological systems from cells to function. Basic knowledge to perform, analyses and report on experiments and observations in physiology Relate knowledge of physiological systems above to selected homeostatic mechanisms and their control. Recognize the principal tissue structures to understanding of key physiological systems | | Indicative Contents | Theory Lectures Learning concepts of each theoretical lecture or groups of lectures. [SSWL = 28 hrs] Lab. Lectures Learning concepts of each laboratory lecture or groups of lectures. [SSWL = 30 hrs] | ## **Learning and Teaching Strategies** Lectures: In traditional lecture-based courses, instructors deliver content to students through spoken presentations. This format is often supplemented with slides, multimedia, or handouts to aid understanding. •Workshops: Workshops enhance the knowledge and understanding of the subject gained from lectures and develop fundamental and subject-specific skills. •Self-guided learning contributes to subjectspecific knowledge and self-motivation. •The examinations demonstrate achievement of the appropriate level of subject-specific knowledge of physiology, with an emphasis on understanding and communication (essay and problem-based questions) or recall of factual knowledge (multiple choice or short answer question tests) •Tutorials: Tutorials are small-group sessions led by a tutor, where students can ask questions, receive individualized support, and clarify concepts covered in lectures or readings. • Practical analysis based on subject-specific knowledge and demonstrate subjectspecific skills in understanding experimental work and data analysis. • Practical exercises allow students to utilize subject-specific knowledge gained from lectures, and support the development of key and subject-specific skills. • Flipped classroom: In a flipped classroom model, students are introduced to course material through selfpaced learning activities outside of class (e.g., watching pre-recorded lectures or reading texts), freeing up class time for interactive discussions, problem-solving, and hands-on activities ## **Strategies** | Student Workload (SWL) | | | | | | |---|----------------------------------|--|--|--|--| | Structured SWL (h/sem)75Structured SWL (h/w)5.2 | | | | | | | Unstructured SWL (h/sem) | 72 Unstructured SWL (h/w) 4.8 | | | | | | Total SWL (h/sem) | 147 +3 final = 150 | | | | | | | Module Evaluation | | | | | | |----------------------|-------------------|-------------|------------------|--------------------------|---------------------------|--| | | | Time/Number | Weight (Marks) | Week Due | Relevant Learning Outcome | | | | Quizzes | 4 | 5% (8) | 2,8,13 | 3,5,6,7,8,11 | | | Formative assessment | Home Work | 4 | 5% (8) | 1,6,9,10 | 4,7,8,11 | | | | Report | 10 | 10% (10) | 4,5,6,7,8,9,
10,12,13 | 1-12 | | | | Lab | 4 | 10%(8) | 4,6,7,12 | 3,5,8,11 | | | | Circal Learn | 2 | 10% (6) | All Weeks | 1-12 | | | Summative | Midterm Exam | 1hr | 10% (10) | 7 | 1 - 7 | | | assessment | Final Exam | 3hr | 50% (50) | 16 | All | | | Total assessment | | | 100% (100 Marks) | | | | | Delivery Plan (Weekly Syllabus) | | | | | |---------------------------------|--|--|--|--| | | Material Covered | | | | | Week 1 | Introduction to cell physiology | | | | | Week 2 | The general and cellular basis of medical physiology | | | | | Week 3 | Circulatory body fluid | | | | | Week 4 | Cardiovascular system: Function, organs and diseases | | | | | Week 5 | Generation and conduction of the cardiac impulse | | | | | Week 6 | Physiology of the nervous system I | | | | | Week 7 | Physiology of the nervous system II | | | | | Week 8 | Mid. Exam | | | | | Week 9 | Renal physiology | | | | | Week 10 | Digestive system I: Structures and tissues | | | | | Week 11 | Digestive system II: Digestion and absorption | | | | | Week 12 | The Anatomy and Physiology of the respiratory system | | | | | Week 13 | Endocrinology I: Introduction and energy balance | | | | | Week 14 | Endocrinology I I: Pituitary gland and thyroid gland | |---------|--| | Week 15 | Reproductive system | | Week 16 | Preparatory week before the final Exam | | Delivery Plan (Weekly Lab. Syllabus) | | | | | |--------------------------------------|--|--|--|--| | | Material Covered | | | | | Week 1 | General laboratory rules and safety procedures | | | | | Week 2 | Introduction to blood physiology. | | | | | Week 3 | Blood typing and blood transfusion. | | | | | Week 4 | Packed cell volume. | | | | | Week 5 | Determination of hemoglobin concentration. | | | | | Week 6 | Determination of bleeding time and clotting time. | | | | | Week 7 | Blood pressure. | | | | | Week 8 | Effect of exercise on blood pressure. | | | | | Week 9 | Erythrocyte sedimentation rate (ESR) | | | | | Week 10 | Differential W.B.C count | | | | | Week 11 | Total W.B.C. count | | | | | Week 12 | Experiments on respiratory system (respiratory rate and volumes) | | | | | Week 13 | Red blood cell counting | | | | | Week 14 | Insulin regulation of blood glucose | | | | | Week 15 | Electrocardiogram (ECG). | | | | | Learning and Teaching Resources | | | | | |---------------------------------|---|---------------------------|--|--| | | Text | Available in the Library? | | | | | Medical Physiology:Principles for Clinical Medicine ,Fourth | | | | | Required Texts | Edition, Rodney A. Rhoades and David R. Bell, Lippincott | Yes | | | | | Williams & Wilkins;2012 | | | | | Recommended | Human Physiology ,Tweifth Edition ,Widmaier ,Raff and | No | | | | Texts | Strang ,2011 | INU | | | | Websites | Website Address. | • | | | | Grading Scheme | | | | | | | |-----------------------------|-------------------------|--------------|----------|---------------------------------------|--|--| | Group | Grade | التقدير | Marks % | Definition | | | | | A - Excellent | Excellent | 90 - 100 | Outstanding Performance | | | | 6 | B - Very Good | Very Good | 80 - 89 | Above average with some errors | | | | Success Group
(50 - 100) | C - Good | Good | 70 - 79 | Sound work with notable errors | | | | | D - Satisfactory | Satisfactory | 60 - 69 | Fair but with major shortcomings | | | | | E - Sufficient | Sufficient | 50 - 59 | Work meets minimum criteria | | | | Fail Group | FX – Fail | Fail | (45-49) | More work required but credit awarded | | | | (0 – 49) | F – Fail | Fail | (0-44) | Considerable amount of work required | | | | | | | | | | | **Note:** Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.