MODULE DESCRIPTOR FORM

Module Information							
Module Title	ELECTROMAGNETIC WAVES				Module Delivery		
Module Type							
Module Code	MPH2201				Theory ✓		
ECTS Credits	5 ECTS						
SWL (hr/sem)		125					
Module Lo	evel	2	Seme	Semester of Delivery 2		2	
Administering D	epartment	MPH	College		College of Sciences		
Module Leader	ader Ayman Mohammed Jaber e-mail			ayman.mo@uowa.edu.iq			
Module Leader's	s Acad. Title	Lecturer Assistant		le Leader' dification	M Sc		
Module Tutor	Ayman N	Mohammed Jaber	shammed Jaber e-mail		ayman.mo@uowa.edu.iq		
Peer Review	ver ame	Ayman Mohammed e-mail		a	ayman.mo@uowa.edu.iq		
Review Committe	ee Approval	2025-01-20	Version I	Number 1.0		1.0	

Relation With Other Modules					
Prerequisite module Electricity and Magnetism Semester UG I, 2nd Semest					
Co-requisites module	No	Semester	No		

المن الانبيسية كلية العلوم من الفيسزياء الطبيسة

Department Head Approval

Dean of the College Approval

Module Aims, Learning Outcomes and Indicative Contents					
	Introducing the student to the concept of electromagnetic waves, how they are transmitted, the phenomena that occur to them, and their difference from longitudinal waves.	.1			
	Introducing the student to the basic theories of electromagnetic waves.	.2			
	Introducing the student to the types of vectors and how to deal with them.	.3			
	Providing the student with knowledge of how to calculate the electromagnetic force and the electromagnetic field.	.4			
Module Aims	Introducing the student to the types of shapes affected by the electromagnetic field.	.5			
	Study of Ampere's law and its applications, and study of Faraday's law and the induced electric field.	.6			
	To explain the unknown by analogy with the known counterpart.	.7			
	Identify the nature of the propagation of electromagnetic waves.	.8			
	Study of the characteristics of the electromagnetic spectrum.	.9			
	Introducing the student to applications of electromagnetic waves in the medical field.	.10			
	The student understands the basic concepts of wave science.	.1			
	To describe the mathematical relationships related to the electromagnetic field.	.2			
	Connecting different wave vectors.	.3			
Module Learning Outcomes	For the student to devise solutions and explanations for physical phenomena, with some modernity and creativity.	.4			
	Explain the general characteristics of an electromagnetic wave	.5			
	Enabling students to obtain knowledge of the parts of the magnetic spectrum	.6			
	and the basis for its division				
	Analyze, investigate, and collect information systematically and scientifically to establish facts and principles	.7			
	Theory Learning concepts of each theoretical lecture or groups of lectures. [SSWI	Lectures L=28 hrs]			
Indicative Contents	Total hrs = ∑SSWL + (Mid Exam hrs+ Final Exam hrs)				
	Total hrs=28+	1+3=32			

Learning and Teaching Strategies						
	Lecture .1					
Strategies	Problem-based learning (PBL) .2					
	Peer teaching and collaborative learning .3					
	Reflective practice .4					
	Student groups5					
	Discussion6					
	Asking questions to the student using a brainstorming method7					
	Giving students assignments to solve problems8					
	Assigning students to prepare reports related to the course9					

Student Workload (SWL)				
Structured SWL (h/sem)	Structured SWL (h/w) 3			
Unstructured SWL (h/sem)	77 Unstructured SWL (h/w) 5.		5.133	
Total SWL (h/sem)	122 + final3 = 125			

Module Evaluation					
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	3	10% (10)	4,7,10	5,7
	Project	1	10%(7)	All Weeks	10
Formative assessment	Home Work	3	10%(10)	4,7,12	3,5,7
	Report	3	10%(8)	4,6,13	All Outcomes
	Circal Learn	1	10%(5)	All Weeks	All Outcome
Summative	Midterm Exam	1	10% (10)	7	3,4
assessment	Final Exam	1	50% (50)	16	1,2,3,4,5,6,7
Total assessment				100%	

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Vector analysis and vector algebra			
Week 2	Coordinate system			
Week 3	Applications of coordinate systems			
Week 4	Static electric field in the presence of coordinates			
Week 5	Coulomb's Law and Electric Field Intensity			
Week 6	Vector Form of Coulomb's Law			
Week 7	Mid. Exam			
Week 8	Force Due to n Number of Charges			
Week 9	Electric Field Intensity			
Week 10	Electric Field at a Point Due to n Number of Charges			
Week 11	Types of Charge Distributions			
Week 12	Electric Field Intensity Due to Various Charge Distributions			
Week 13	Electric Field Due to Infinite Line Charge			
Week 14	Electric Field Due to Charged Circular Ring			
Week 15	Electric Field Due to Infinite Sheet of Charge			

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	Engineering Electromagnetic, 8 th edition, 2010, William Hyatt.	No			
Recommended Texts	Electromagnetic waves and Transmission lines, 2007, Bakshi U. A. and Bakshi A. V.	No			
Websites					

APPENDIX:

GRADING SCHEME مخطط الدر جات التقدير Group Grade Marks (%) **Definition** Excellent 90 - 100 **Outstanding Performance** A - Excellent B - Very Good Very Good 80 - 89 Above average with some errors **Success Group** C - Good 70 - 79 Good Sound work with notable errors (50 - 100)**D** -Satisfactory Satisfactory 60 - 69 Fair but with major shortcomings E - Sufficient Sufficient 50 - 59 Work meets minimum criteria FX - Fail Fail (45-49)More work required but credit awarded Fail Group F - Fail (0 - 49)Fail (0-44)Considerable amount of work required Note:

Note.

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.