MODULE DESCRIPTOR FORM

Module Information							
Module Title	F	ATOMIC PHYSICS				[odu]	le Delivery
Module Type		Core					
Module Code		MPH2204			Theory ✓ Lab ✓ Tutorial ✓		
ECTS Credits		8 ECTS					Lab √ Tutorial √
SWL (hr/sem)	200						
Module Level		2	Seme	Semester of Delivery			2
Administering D	Administering Department MPH		College		College of Sciences		f Sciences
Module Leader	Hikmat	Adnan Jwad	e-mail]	Hikmat.a@uowa.edu.iq		uowa.edu.iq
Module Leader's Acad. Title		Lecturer	Module Leader's Qualification		Ph.D.		
Module Tutor	· Hikmat Adnan Jwad		e-mail]	Hikmat.a@uowa.edu.iq		uowa.edu.iq
Peer Review	er name	Hikmat Adnan Jwad	e-mail	Hikmat.a@uowa.edu.iq		uowa.edu.iq	
Review Committee Approval 2		2025-01-20	Version I	Number 1.0		1.0	

Relation With Other Modules					
Prerequisite module None Semester None					
Co-requisites module	None	Semester	None		

المحمد وارث الانبيسية كلية العلوم قسم الفيسزياء الطبيسة

Department Head Approval

Dean of the College Approval

Module Aims, Learning Outcomes and Indicative Contents					
	Learn about general concepts about the atom and the laws that govern it.	.1			
	Identify models describing atomic structure and the components of the atom	.2			
	Know how to determine the quantum numbers of electrons in an atom.	.3			
	Learn about the theory of perturbations in atomic levels.	.4			
Module Aims	Study the absorption and emission of atom levels and identify spontaneous emissions	.5			
	Study of permitted and prohibited transitions between atomic levels.	.6			
	Study the effect of electric and magnetic fields on atomic levels and learn	.7			
	about the phenomenon of the Zeeman and Stark effect.				
	Study of the connection between the spin and spin of the electron and the	.8			
	associated interactions.				
	Developing students' skills in logical thinking and analysis	.1			
	Enabling students to confront the fear of presenting in front of the public by	.2			
	presenting them with seminars related to the subject of atomic physics over				
	the first semester in the form of groups.				
	Make students able to search for good and valuable information by asking	.3			
	them to do homework related to the subject.				
Module Learning	Make student knowledgeable about atomic physics topics	.4			
Outcomes	Make the student able to use scientific sources by explaining to him how to	.5			
	obtain information from reliable sources.				
	Developing student thinking and linking information through lectures,	.6			
	explanatory videos, and ways to use information from respected academic				
	sources and express it in different ways.	7			
	Make the student able to create an environment of understanding and familiarity with his colleagues through awareness campaigns	.7			
	Maximizing the Creator's ability in the presence of natural and scientific	.8			
	phenomena.	.0			
	Theory Le	actures			
	Learning concepts of each theoretical lecture or groups of lectures. [SSW	_			
	<u>Lab. Lectures</u>				
Indicative Contents	Learning concepts of each laboratory lecture or groups of lectures. [SSW	/L= 30]			
	Total hrs = \sum SSWL + (Mid Exam hrs+ Final Exam hrs)				
	Total hrs = 28 +30 + 1 -	+3 = 62			

Learning and Teaching Strategies				
	Lecture	-1		
	Problem-based learning (PBL)	-2		
Strategies	Peer teaching and collaborative learning	-3		
	Reflective practice	-4		
	Workshops	-5		

Laboratory sessions -6	
Student groups7	
Discussion8	
Giving students assignments to solve problems9	
Assigning students to prepare reports related to the course10	

Student Workload (SWL)				
Structured SWL (h/sem) 75 Structured SWL (h/w) 5				
Unstructured SWL (h/sem)	uctured SWL (h/sem) 122 Unstructured SWL (h/w) 8.133			
Total SWL (h/sem)	197 + 3 final = 200			

	Module Evaluation				
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	3	10%(10)	3,6,9	3,6
	Project	1	10%(8)	All Weeks	1-8
Formative assessment	Lab	3	10% (7)	All Weeks	2,5,7
	Home Work	2	10% (7)	All Weeks	4,8
	Report	2	10%(8)	All Weeks	7,8
Summative	Midterm Exam	1	10% (10)	7	
assessment	Final Exam	1	50% (50)	16	
Total assessment				100%	

	Delivery Plan (Weekly Syllabus)				
	Material Covered				
Week 1	Introduction to atomic physics.				
Week 2	Quantum mechanical description of the hydrogen atom Angular Momentum Atomic Spectra Time.				
Week 3	Independent Perturbation Theory Fine Structure.				
Week 4	Spin Orbit Coupling				
Week 5	Relativistic Effects				
Week 6	Time-Dependent Perturbation Theory Interaction of Atoms with E. M. Radiation				
Week 7	Mid. Exam				
Week 8	Absorption and Emission of Radiation				
Week 9	Allowed and Forbidden Transitions				
Week 10	Spontaneous Emission Many Electron Atoms				
Week 11	Atoms in Magnetic Field and Stark effect				
Week 12	Zeeman Effect, Weak-Field Zeeman Effect and Strong field Zeeman effect				
Week 13	Hund's Rules and Atomic Orbitals				
Week 14	Spin Orbit Interactions, LS-coupling approximation and jj-coupling approximation				
Week 15	Selection Rules Atoms in Electric or Magnetic Fields				

	Delivery Plan (Weekly Syllabus)				
	Material Covered				
Week 1	X-ray physics Attenuation of x-rays				
Week 2	Determination of the specific charge of the electron.				
Week 3	Diffraction of electrons in a polycrystalline lattice				
Week 4	Study the spectrum of mercury atom.				
Week 5	Plank's Constant				
Week 6	Stefan-Boltzmann's Law				
Week 7	Investigation Ballmer series / Determination of Rydberg's constant.				
Week 8	Heisenberg's uncertainty principle				
Week 9	Frank-Hertz experiment with Neon				
Week 10	Diffraction of electrons in a polycrystalline lattice				
Week 11	Study the spectrum of mercury atom.				
Week 12	Plank's Constant				
Week 13	Stefan-Boltzmann's Law				
Week 14	Investigation Ballmer series / Determination of Rydberg's constant.				
Week 15	Heisenberg's uncertainty principle				

Learning and Teaching Resources				
	Available in the Library?			
Required Texts	Atomic Physics 2010, Massachusetts, Wesley	No		
Recommended Texts	No			
Websites https://www.britannica.com/Science-Tech https://www.sciencedirect.com/				

APPENDIX:

GRADING SCHEME					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	Excellent	90 - 100	Outstanding Performance	
Suggest Chann	B - Very Good	Very Good	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	Good	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	Satisfactor y	60 - 69	Fair but with major shortcomings	
	E - Sufficient	Sufficient	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	Fail	(45-49)	More work required but credit awarded	
(0-49)	F – Fail	Fail	(0-44)	Considerable amount of work required	
	Note:				

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.